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Abstract. In this study, we investigate several statistical techniques
for personal name popularity estimation and perform a record linkage
experiment guided by name popularity estimates. The results show that
name popularity can leverage personal name matching in databases and
be of interest for many other domains.
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1 Introduction

Record linkage – the task of matching records referring to the same real-world
entity – is a well-studied field within database technology. The task arises when
several databases are merged or one is interested in linking duplicate records
within a single database. Records referring to people are the most common
objects of linkage task. Our study is motivated by an applied record linkage
task in a large database, where occurrences of personal names are accompanied
with no or only scarce additional information. Under these circumstances, name
popularity estimates serve as the main signal for record matching.

Knowing an estimate of people bearing a particular name is beneficial not
only for record linkage, but also for social network analysis, people search, in-
formation security, and information extraction. Unfortunately, accurate name
popularity estimation based on limited number of observations is a hard task.
Even very large collections contain many unique names – names are a good
example of large number of rare events (LNRE) distributions. Therefore, maxi-
mum likelihood estimates based even on large name samples are poor predictors,
since there are always many unseen names. To address this issue we employ sev-
eral smoothing techniques that redistribute probability mass from already seen
names towards yet unseen ones. Moreover, we use LNRE models to estimate the
number of unique names and use this estimate as a smoothing parameter.
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In our study we used a large dataset of open government data. We conducted
two experiments: 1) name popularity estimation and 2) record linkage guided
solely by the name popularity estimates. We performed evaluation both for name
triples (first, middle, and last) and doubles (first and last). Our results suggest
that theoretically informed approaches outperform simple heuristics. The main
contribution of our study is a thorough comparative evaluation of several sta-
tistical techniques applied to the name popularity estimation task on a sizable
dataset. The study provides guidance for choosing the most appropriate model
depending on available data, task, and performance requirements.

Related work. Our study is close to personal name matching [6], a special
case of record linkage – the task of matching records referring to the same real-
world person in the presence of errors, spelling variants, omissions, abbreviation,
etc. Most name matching method rely on pre-defined or machine-learned sim-
ilarity measures for field values and tuples, see [7]. The main difference of our
study is that we deal with identical names and no additional fields. Moreover, we
do not adjust our methods to a particular database; we rather aim at modeling
name popularity at a global scale. As such, name popularity models can deliver
additional evidence for record linkage tasks applied to different databases and
in case of scarce additional information. The advent and proliferation of online
social networks had a powerful impact on quantitative research on names, as
name is often the only available information about the user. There is a series of
studies that derive ethnicity [4,16] and gender [2] from names in social network
profiles. Perito et al. [17] and Liu et al. [15] introduce the problem of linking user
profiles belonging to the same physical person between online social networks
based solely on the uniqueness of usernames.

Smoothing techniques we employ in the study have been actively developed
within statistical language modeling [12,5]. Khmaladze [14] introduced the notion
of LNRE distributions and studied their statistical properties. Baayen [1] and
Evert [8] elaborated the models for a better fitting of frequency distributions of
words in large corpora, with special attention to hapax legomena (words with
frequency 1). We use LNRE models for a more accurate choice of smoothing
parameters in several evaluated methods.

2 Data

In our study we experiment with a dataset that originates from the Russian
registry of legal entities4. There is a many-to-many relationship between per-
sons and companies: each legal entity is associated with one or more persons –
managers and/or founders; each real-word person can be associated with several
companies. The registry contains about 32 million name mentions. Full names in
Russian official documents are triples comprising of first, middle (patronymic),
and last names, for example, Alexander Sergeyevich Pushkin.

A subset of records contains persons’ taxpayer identification numbers (TINs)
that can be used as a key. In the rest of the paper we focus on about 20.6 million

4 http://egrul.nalog.ru/
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Fig. 1: Share of unique names depending on population size.

records containing both TIN and full name that refer to about 13.4 million real
persons, which constitutes about one tenth of the entire Russian population.

First, middle, and last names taken separately or as full names are a good
example of LNRE regime: the majority of names occur only once, while a small
number of combinations are relatively common. Expectedly, last names tend
to be more rare than first names and patronymics (the latter are derivatives
from male first names). Figure 1 shows proportions of unique name combina-
tions in random samples of different sizes. For example, in a random population
of 100,000 a combination of first, middle and last name is an almost perfect
identifier (about 96% people bear a unique name), while name pairs (first, last)
reliably distinguish less then 75% of people in the same sample.

3 Methods

Name Popularity Prediction. In this section, we informally describe name
popularity prediction models evaluated within the study. In what follows, C(x)
is the number of people with a name x in a training set Strain, where x can
be either a full name or its constituents; f stands for first name, m and ` –
for middle and last names, respectively; Nr is the number of names that occur
exactly r times in Strain and N is the total number of persons in Strain.

We start with a näıve estimate assuming all people have unique names
(model I). So, the number of people with the name x is equal to 1 in the popu-
lation of any size. Then, we proceed with straightforward maximum likelihood
estimates (MLE) for full names (II):

PMLE(fm`) =
C(fm`)

N
(1)

Model II assigns zero probabilities to names unseen in Strain. To partially
mitigate the problem we can assume independence of name constituents and
approximate the probability of a full name as follows, which defines model III:



Pind(fm`) = PMLE(f)PMLE(m)PMLE(`) =
C(f)

N
· C(m)

N
· C(`)

N
(2)

This model assigns a zero probability to a name if one of its components is new
in the test set.

Some combinations of first, middle, and last names occur together more fre-
quently than others. To capture these dependencies we use conditional probabil-
ities. In the case of names triples we apply Markov assumption, in other words –
we account only for dependencies between pairs of constituents leading to model
IV:

P (fm`) = P (f)P (m|f)P (`|f,m) ≈ P (f)P (m|f)P (`|m) (3)

Further, to mitigate the problem of zero probabilities of unseen name com-
ponents, we use several smoothing techniques [5,12].

Laplace smoothing (models V and VI) is a simple additive smoothing method:
pretend that every name x occurs α > 0 times more than it has been observed
in the training set. Thus, the number of people with previously unseen name is
estimated to be α. If V is the set of unique names in Strain, then

PL(x) =
C(x) + α

N + α|V |
(4)

In the case of LNRE distributions it is highly beneficial to have an estimate
of unseen events for smoothing. LNRE models implemented in zipfR [10] allow
us, starting with name the frequency distributions of Strain, to estimate the
number of different names in a set of larger size and consequently the number
of names not appearing in Strain. As Table 1 shows, the Generalized Inverse
Gauss-Poisson (GIGP) model implemented in zipfR performs very well.

Table 1: Prediction of the number of unique names (the third column contains
country-wide estimates for reference).

Name
GIGP

estimates
Actual

counts in S
Country-wide

GIGP estimates

f 111,538 111,287 405,154
m 155,635 155,726 462,738
` 461,343 463,613 729,218

f ` 4,383,342 4,391,157 20,330,441
f m ` 9,088,527 9,087,716 65,867,708

Good-Turing smoothing [11] is a more gentle smoothing approach widely
employed in language modeling (VII). The general idea behind the approach
is to estimate the probability of all unseen names roughly equal to the total
probability of names that appear only once in Strain, i.e. N1

N . The counts of all



other names are discounted as C∗(x) = (C(x) + 1)NC(x)+1/NC(x). The Good-
Turing probability estimates are given by:

PGT (x) =

{
C∗(x)
N , if C(x) > 0

N1

N ·
1
E , if C(x) = 0

, (5)

where E is a GIGP estimate of hapaxes in S based on Strain. Note that it
implies we know the size of the test set S beforehand.

One of the drawbacks of the Good-Turing smoothing is that it discounts prob-
abilities uniformly in different frequency ranges. It leads often to severely dis-
torted probabilities for high-frequency items. Katz smoothing [13] uses MLE for
high-frequency names (C(x) > 3 in our experiment) and Good-Turing smoothing
for low-frequency ones (model VIII).

Aiming at combining the simplicity of Laplace smoothing and the selectivity
of Katz smoothing, we introduce pseudo-Laplace smoothing with a small α > 0
(model IX):

P ∗PL(x) =

{
C(x)
N+α , if C(x) > 0
α

N+α , if C(x) = 0
(6)

The idea is quite simple: names present in the training set obtain probability
close to the MLE, while unseen names get reasonable non-zero probabilities. In
a strict mathematical sense, these are not probabilities, since they do not sum
up to unity (and that is why we denote it P ∗). Such probability-like scores are
widely used in many practical applications, see for example “stupid back-off”
introduced in [3].

Name popularity estimation. The first experiment is estimation of name
popularity, i.e. estimation of the number of people bearing each name. Evaluation
of models on samples with a large number of unique events is not an easy task.
Evaluation results may diverge significantly on different test samples and depend
on the size of test sample, particularly in low frequencies ranges. For example,
LNRE models are traditionally evaluated by looking at how well expected values
generated by them fit empirical counts extracted from the same dataset used for
parameter estimation [8,1]. In this experiment we follow extrapolation setting
for evaluation described in [9]: the parameters of the model are estimated on a
subset of the data used subsequently for testing. The whole data set S is a list of
13.4 million real-world persons represented by TINs and corresponding names.
We randomly sampled a training set Strain of 6.7 million persons, which is 50%
of S. We employ root-mean-square error (RMSE) between the estimates and
actual counts averaged over all names as evaluation measure. RMSE of a model
M on the test set of people S over the set of unique full names V is defined as
follows:5

σ = 2

√∑
x∈V (|S| · PM(x)− C(x))2

|V |
(7)

5 Note, that in this case C(x) corresponds to the number of persons bearing name x
in S (not in Strain as in equations above).



Table 2: Name models performance for full name triples
Model Description σ1 σ2−5 σ6−20 σ20−100 σ>100

I Always 1 0.000 1.833 9.163 38.279 163.327
II PMLE(fml) 1.000 1.611 3.061 5.949 12.627
III PMLE(f)PMLE(m)PMLE(`) 0.940 1.842 4.633 14.573 56.297
IV PMLE(f |m)PMLE(m|`)PMLE(`) 0.897 1.608 3.165 6.639 16.925
V PL(f |m)PL(m|`)PL(`) α = 1 0.999 2.720 9.779 36.277 137.747
VI PL(f |m)PL(m|`)PL(`) α = 1

|Strain|
0.897 1.608 3.165 6.639 16.925

VII PGT (f |m)PGT (m|`)PGT (`) 0.900 1.622 3.171 6.644 16.931
VIII PK(f |m)PK(m|`)PK(`) 0.901 1.614 3.165 6.639 16.925
IX P ∗PL(f |m)P ∗PL(m|`)P ∗PL(`) α = 1 0.885 1.608 3.165 6.639 16.925

In order to have a better understanding of models’ behavior and their applica-
bility to different tasks and data volumes, we calculate σ for the following name
frequency buckets: 1 (hapaxes), 2− 5, 6− 20, 21− 100, and > 100.

Record linkage. For the second task we calculate the probability that there
is a single person with a given name x in the population of size |S| using estimates
by different models M. If the probability surpasses the threshold t, we link
records with identical names. Note that all identical names are linked at once,

whereby q records with a given name trigger q(q−1)
2 linkages. The evaluation

measure for the task are standard classification measures: precision – the fraction
of linked records pairs that are correct, i.e. both refer to the same real-world
person, and recall – the fraction of correct links identified. There are about 63.2
million pairs of identical names among 20.6 million occurrences, i.e. potential
links between same-person records; 32% of them are correct according to TINs.
Taking into account these figures, linking all possible pairs results in precision =
32% and recall = 100%.

In contrast to the first experiment that presumably reflects a global distri-
bution of names, the second experiment deals with a concrete database and its
particular characteristics, e.g. the number of companies associated with a person.

4 Results

Table 2 summarizes evaluation results for nine name popularity prediction mod-
els.6 The first model (I) is a näıve “always 1” baseline that assumes all names are
unique. Obviously, the model performs ideally on hapaxes. MLE model for full
name triples (II) demonstrates the best prediction results in higher frequency
ranges. The product of individual probabilities for first, middle and last names
(III) performs slightly better on hapaxes, but substantially underestimates the
probability of more frequent names. We investigated different dependencies be-
tween full name constituents, and combination in the model IV performed best.

6 We also performed an experiment with first-last name doubles that showed similar
behavior of the models. We do not cite the results here due to limited space.



(a) name triples (first, middle, last) (b) name doubles (first, last)

Fig. 2: Record linkage evaluation results: precision (upper curves) and recall
(lower curves) of various name count prediction methods depending on the
threshold value t

As one can see, conditional probabilities considerably improve over model III
that assumes independence of name constituents. The next five models incor-
porate smoothing. Add-1 smoothing (V) is too aggressive in case of LNRE dis-
tributions and model with independent name components (III) has too many
zeros probabilities in case of one of name component is unseen. All other models
perform slightly worse then MLE model, but comparably to each other models
with smoothing. Our method (IX) performs best in the low-frequency range and
equally well as models IV and VI in higher-frequency areas.

Record linkage Results of the record linkage experiment are presented in
Figures 2a (name triples) and 2b (name doubles). The threshold t governs the
linkage process: the higher the threshold the less name mentions are linked. One
can imagine the process of gradual data linkage going from right to left, from
higher to lower t values. Stepped curves of the MLE models are due to the
fact that at some t values a large number of links is established at a time. In
the case of full name triples (Figure 2a) all ‘advanced’ methods deliver almost
identical results. The simplest MLE method for full names works well when we
favor precision over recall. Threshold t = 0.2 delivers precision of about 90% and
recall above 70%. In the case of first and last name doubles, the task of record
linkage in such a sizable dataset based solely on name popularity estimates is
much less effective (see Figure 2b).

5 Conclusion

In our experiments we make use of a large name dataset with unique identi-
fiers that contains names of approximately one tenth of the Russian population.
We conducted a series of experiments with different name popularity prediction
models built upon the name dataset. We thoroughly evaluated several models,
including well-known smoothing approaches and proposed a new simple yet ef-
fective method for adjusting probability estimates accounting for unseen events.
Results show that the considered methods behave differently depending on the



frequency range of names to be estimated, the name structure (full name triples
vs. first and last name doubles), and the population size for which the prediction
is made. These experimental results can serve as guidelines for choosing the most
suitable method for a specific task and available data.

We conducted a record linkage experiment in a database based solely on name
popularity estimates. The outcomes suggest that name popularity estimates are
a valuable signal for personal name matching. Results show that all methods
using smoothing perform almost identically and the simplest method based on
maximum likelihood estimates can be a good choice, when precision is more
important than recall. However, these results reflect the peculiarities of a specific
database and serve merely as an illustration of feasibility of the approach.
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